UNIVERSIDAD AUTÓNOMA CHAPINGO

DEPARTAMENTO DE PREPARATORIA AGRÍCOLA

ÁREA DE AGRONOMÍA

ACADEMIA DE GENÉTICA

PROBLEMAS DE GENÉTICA RESUELTOS

Compilado por: Profa. Edith del R. García Hdez con la colaboración de estudiantes del grupo 7 de tercer año

2

Presentación:

El presente trabajo, es una alternativa para el aprendizaje y práctica de

algunos problemas que forman parte del programa de Genética,

que los estudiantes de la Preparatoria Agrícola de la asignatura

Universidad Autónoma Chapingo cursan en el quinto semestre.

Para facilitar el entendimiento de los problemas de este cuaderno, cada

uno contiene datos sobre los progenitores los cuales generalmente se

presentan antecedidos con la letra (P), de los gametos cuya letra

correspondiente se coloca dentro de la siguiente figura

Además de lo anterior, se presenta el desarrollo de cada problema, así

como la proporción genotípica y fenotípica de la descendencia de la

primera y segunda generación filial (F1 y F2 respectivamente), según sea

el caso.

Los problemas están organizados en tres grupos: Genética mendeliana,

Interacción génica y Herencia ligada con el sexo.

La intensión del presente trabajo es que sirva de apoyo al aprendizaje

autónomo de estudiantes regulares y de reingreso.

Atentamente:

Profa: Edith del R. García Hernández

Academia de Genética

Preparatoria Agrícola UACH

Mendeliana (Cruzas monohíbridas)

Problema 1

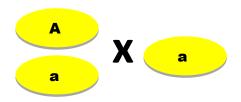
El color de la semilla de chícharo puede ser amarillo (A) o verde (a). En una serie de experimentos controlados, se efectuaron varias cruzas entre plantas con los siguientes resultados.

	Fenotipo de los progenitores	Fenotipo de las semillas resultantes del cruce (F1)
1	Amarilla x verde	86 amarillas + 81 verdes
2	Amarilla x amarilla	Todas amarillas
3	Verde x verde	Todas verdes
4	Amarilla x amarilla	108 amarillas + 35 verdes
5	Amarilla x verde	Todas amarillas

Teniendo en cuenta exclusivamente los datos presentados.

- a) ¿Qué relación de dominancia/recesividad hay entre los factores que regulan las dos alternativas?
- b) Señale los genotipos más probables de los progenitores indicados en la tabla, y de sus descendientes.
- c) Escriba las proporciones fenotípicas y genotípicas de la F1 de cada una de las cruzas.


Respuestas


 a) El color amarillo representado por la letra A es dominante sobre el color verde.

Datos: A= Amarilla; a= Verde

1) P= Aa x aa (amarilla x verde)

Gametos:

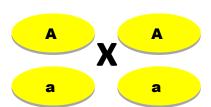
Proporciones genotípicas	Proporciones fenotípicas
½ Aa	1/2 Amarillas
½ aa	½ Verdes

2) P= AA x AA (amarilla X amarilla) Gametos:

A	X	A		Α	
			Α	AA	

Proporciones genotípicas	Proporciones fenotípicas	
1 AA	1 Amarillas	

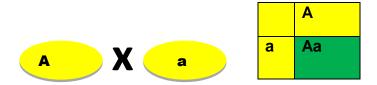
3) P= aa x aa (verde x verde)



	а
а	aa

Proporciones genotípicas	Proporciones fenotípicas
1 aa	1 Verdes

4) P= Aa x Aa (amarilla X amarilla)


Gametos:

	A	а
Α	AA	Aa
а	Aa	aa

Proporciones genotípicas	Proporciones fenotípicas
1/4 AA	3/4 Amarillas
½ Aa	1/2 Verdes
1/4 aa	

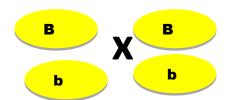
5) $P = AA \times aa$ (amarillo por verde)

Proporciones genotípicas	Proporciones fenotípicas	
1 Aa	1 Amarillas	

Problema 2

Los resultados de cruzas entre plantas de flores rojas (B) y flores blancas (b) se indican en la siguiente tabla. De esos datos, señale cuál es el alelo dominante y cual el recesivo. Además, proporcione el genotipo de los progenitores de cada una de las cruzas.

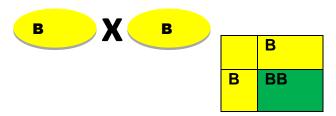
	Genotipo de los cruces	Fenotipo de las semillas resultantes del cruce (F1)
1	flores rojas X flores rojas	3/4 flores rojas y 1/4 flores blancas
2	Flores blancas x flores	Todos con flores blancas
	blancas	
3	Flores rojas por flores blancas	½ flores rojas y ½ flores blancas
4	Flores rojas por flores blancas	Todas las flores blancas


Datos: B= Flores rojas, b= flores blancas

Respuestas:

El genotipo dominante es B y el recesivo b

1) Flores rojas X flores rojas


P= Bb x Bb

В	BB	Bb
b	Bb	bb

Proporciones genotípicas	Proporciones fenotípicas
1/4 BB	3/4 flores rojas
½ Bb	1/4 flores blancas
1/4 bb	

2) P= BB x BB (flores rojas X flores rojas)

Proporciones genotípicas	Proporciones fenotípicas	
1 BB	Todas las flores son rojas	

3.- Flores rojas X flores blancas

 $P = Bb \times bb$

	В	b
b	Bb	bb

Proporciones genotípicas	Proporciones fenotípicas
½ Bb	1/2 flores rojas

½ bb	1/2 flores blancas

3) Flores rojas X flores blancas

 $P = BB \times bb$

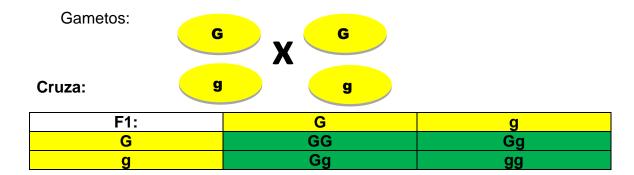
Proporciones genotípicas	Proporciones fenotípicas	
1 Bb	1 flores rojas (Todas heterocigas)	

Problema 3

En la especie humana y en los chimpancés hay individuos que pueden gustar concentraciones muy bajas de una sustancia llamada feniltiocarbamida (PTC) (gustadores) e individuos que no pueden percibirla incluso a concentraciones elevadas (no gustadores). Dos individuos gustadores tienen un hijo no gustador, suponiendo que el carácter gustadores está determinado por un gen (G) y el no gustador por su alelo (g) ¿cómo se explicar estos resultados?

Plantee una cruza donde se responda las siguientes preguntas:

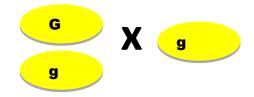
- a) ¿Qué tipo de dominancia podría pertenecer este carácter?
- b) ¿Podría tener este hijo no gustador hermanos gustadores?
- c) ¿Podría tener este hijo no gustador hijos gustadores?


Respuestas:

Es un ejemplo de dominancia completa, el carácter de gustador corresponde a un gen dominante (G), mientras que el no gustador a un recesivo (g).

Datos: G= gustador; g= no gustador;

Cruza de los padres:


Progenitores: Gg X Gg

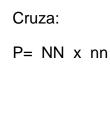
En la cruza se observa que los individuos gustadores podrían tener hermanos gustadores y no gustadores.

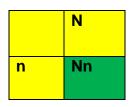
d) Un individuo no gustador necesariamente tiene un genotipo (gg), éste podría tener hijos gustadores, si se casara con individuos gustadores de los genotipos (GG o Gg), esta condición se ilustra en la siguiente cruza:

Progenitores: GG X Gg

Gametos:

Cruza:

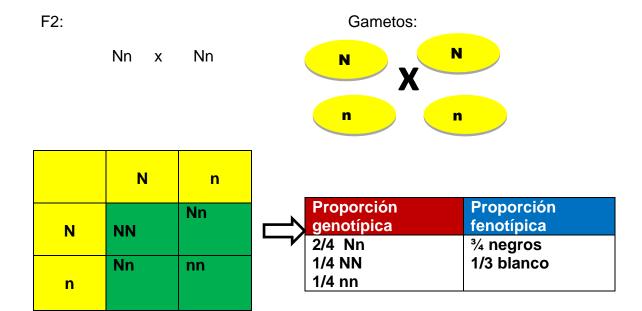

	g
G	Gg
g	gg


Proporción genotípica:	Proporción genotípica:
1/2= gustadores	1/2= GG
½= no gustadores	1⁄₂ = G g
-	_

Problema 4

En un cruce entre una cobaya negra (N) y un macho blanco (n), todos los individuos de la generación F1 fueron negros. La generación F2 presentó aproximadamente, de ¾ cobayos negros y ¼ de blancos. Esquematice los genotipos de los progenitores y el genotipo resultante.

Datos: N= negro; n= blanco.



Gametos:

Proporcion genotipica	Propocion fenotipica
100% Nn	100% negro

b) Si se cruzan dos cobayos blancos de la F2 ¿a quién se parecerán los descendientes?

R= serán cobayos blancos como el padre

P: nn x nn

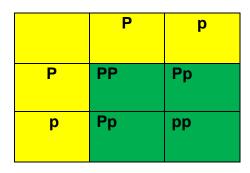
gametos: n x n

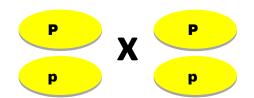
Determine si existe segregación independiente de este carácter, mediante una prueba de chi cuadrada en una cruza donde se obtuvieron 125 cobayos negros y 39 blancos.

0	е	о-е	(o-e) ²	$(o-e)^2$
				e
125	123	2	4	0.0325
39	41	-2	4	0.1025
Total.				0.1350

Valor de la Chi cuadrada: 0.1350

Chi cuadrada calculada: 3.841


Problema 5


Suponga que en la especie humana el albinismo se hereda como un carácter recesivo simple (p), mientras que la condición normal se produce por su alelo domínate (P). Determine los genotipos de los padres y de los descendientes de los matrimonios que se enlistan a continuación. También añada la proporción genotípica y fenotípica de los mismos.

Datos: P= normal; p=albino.

a) Dos padres normales tienen cuatro hijos tres normales y uno albino.

P: Pp X Pp. Gametos:

Proporción genotípica	Proporción fenotípica
1/4 PP	75% normales
⅓ pp ⅓ Pp	25% alvinos

b) Un varón normal y una mujer albina tienen seis hijos todos normales.

P: PP X pp Gametos:

Proporción genotípica: 100% Pp

Proporción fenotípica: 100%

normales

Datos: V= variegado; v=liso

Las palomas pueden presentar un patrón de plumaje variegado (V) o liso (v). En una serie de cruces controlados, se obtuvieron los siguientes resultados:

CRUCE P1	DESCEN	DESCENDENCIA	
	VARIEGADO	LISO	
a) variegado x variegado	36	0	
b) variegado x liso	38	0	
c) liso x liso	0	35	

Luego se cruzaron selectivamente los descendientes de F1 con los siguientes resultados. Se indica entre paréntesis los cruces de la F1 de cada grupo de palomas

CRUCES DE F1 x F1	DESCENDENCIA	
	VARIEGADO	LISO
d) Variegado (a) x liso (c)	34	0
e) Variegado (b) x liso (c)	17	14
f) Variegado (b) x variegado (b)	28	9
g) Variegado (a) x variegado (b)	39	0

Determine los genotipos de los progenitores y las proporciones fenotípicas y genotípicas de los descendientes en cada cruce.

Progenitores: a) variegado x variegado

P= VV x VV

Gametos:

Prop. Genotípica:	100% VV
Prop. Fenotípica:	100% Variegado

Progenitores: b) variegado x liso

P= VV x vv

Cruza

Prop. Genotípica:	100% Vv
Prop. Fenotípica:	100% Variegado

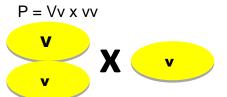
Progenitores: c) liso x liso

P= vv X vv

Cruza

Prop. Genotípica:	100% vv
Prop. Fenotípica:	100% liso

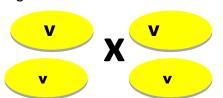
Cruzas de F1: d) Variegado (a) x liso (c)


 $P = VV \times vv$

Gametos: cruza

Prop. Genotípica:	100% Vv
Prop. Fenotípica:	100% variegado

Cruzas de F1: e) Variegado (b) x liso (c):

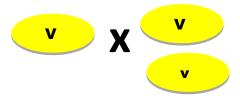

Cruza

	V
V	Vv
V	VV

Prop. Genotípica:	1/2 Vv 1/2 vv
Prop. Fenotípica:	50% variegado 50% liso

Cruzas de F1: f) variegado (b) x variegado (b)

gametos: Cruza:


	V	V
V	VV	Vv
V	Vv	VV

Prop. Genotípica:	25% VV
	50% Vv
	25% Vv
Prop. Fenotípica:	75% Variegado
	25% Normal

Cruzas F1: g) Variegado (a) x variegado (b)

P= VV x Vv

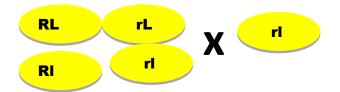
Gametos:

Cruza

	V
V	VV
V	Vv

Prop. Genotípica:	50% VV 50% Vv
Prop. Fenotípica:	100% Variegado

CRUZAS DIHIBRIDAS

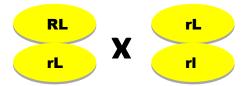


Suponga que en algunas razas de perros, el pelo rizado (R) domina sobre el pelo liso (r). En otro cromosoma se localiza la característica de ladrar cuando los perros siguen un rastro y es producida por un gen dominante (L) mientras que su alelo recesivo codifica para el caracter silencioso (I). Ambas características segregan de forma independiente. Si usted quisiera tener cachorros de pelo rizado y ladradores y también de pelo lacio y silencioso ¿Cómo deberían ser los progenitores?

Datos: R= rizado; r= lacio; L= ladrador; l= silencioso

Esta es una de las posibles cruzas donde se obtienen los genotipos indicados

1) P= RrLl x rrll

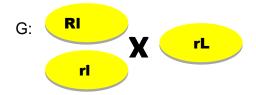


Proporciones genotípicas	Proporciones genotípicas
1/4 RrLI	1/4 rizado y ladrador
1/4 RrII	1/4 rizado y silencioso
1/4 rrLl	1/4 lacio y ladrador
1/4 rrll	1/4 lacio y silencioso

Determine las proporciones genotípicas y fenotípicas de los cachorros que se producirían de las siguientes cruzas:

2) P= RrLL x rrLl

Gametos=

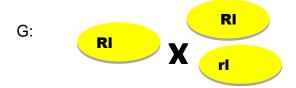

Cruza

	rL	rl
RL	RrLL	RrLI
rL	rrLL	rrLl

Proporciones genotípicas	Proporciones fenotípicas
1/4 RrLL	2/4 ladradores, pelo rizado
1/4 RrLI	2/4 ladradores, pelo lacio

¼ rrLL	
¼ rrLl	

3) P= RrII x rrLL



Cruza

	rL
RI	RrLl
rl	rrLl

Proporciones genotípicas	Proporciones fenotípicas
1/2 RrLI	½ rizado y ladrador.
½ rrLl	½ lacio y ladrador

4) P= RRII x RrII

Cruza

	RI	rl
RI	RRII	RrII

Proporciones genotípicas	Proporciones fenotípicas
½ RRII	100% rizado y silencioso
½ RrII	

Problema 8

Mendel cruzo líneas puras de chicharos con semillas lisas (L) y cotiledones amarillos (A) por líneas de chicharos con semillas rugosas (l) y cotiledones verdes (a). Todas las plantas F1 presentaron semillas redondas y cotiledones amarillos. Mientras que la F2 obtuvo 329 semillas lisas y amarillas, 106 semillas lisas y verdes, 112 semillas arrugadas y amarillas y 34 semillas arrugadas y verdes.

Esquematice los progenitores, F1 y F2 de la cruza descrita, así mismo determine la segregación independiente de estos caracteres mediante el cálculo de chi cuadrada.

a) Progenitores: LLAA x Ilaa

Cruza:

	la
LA	LIAa

Prop. Genotípica:	100% LIAa
Prop. Fenotípica:	100% Semillas lisas, cotiledones amarillos.

b) Cruza F1 X F1

LIAa X LIAa

Gametos

	LA	La	IA	la
LA	LLAA	LLAa	LIAA	LIAa
La	LLAa	LLaa	LIAa	Llaa
IA	LIAA	LIAa	IIAA	IIAa
la	LIAa	Llaa	IIAa	llaa

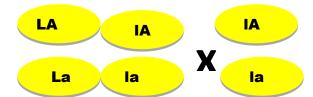
Prop. Genotípica:	4/16 LIAa
	2/16 LLAa
	2/16 LIAA
	2/16 IIAa
	2/16 Llaa
	1/16 LLaa
	1/16 IIAA
	1/16 Ilaa
Prop. Fenotípica:	9/16 Semilla lisa, cotiledón amarillo (329)
	3/16 Semilla lisa, cotiledón verde (106)
	3/16 Semilla rugosa, cotiledón amarillo (112)
	1/16 Semilla arrugada y verde (34)

c) Cálculo de la chi cuadrada:

Clases fenotípicas	Obs.	Esp.	(o-e)	(o-e) ²	(o-e) ² /e	Valor Chi ²	Val. tab.
Semilla lisa, cotiledón amarillo	329	326.81	2.19	4.79	0.14		
Semilla lisa, cotiledón verde	106	108.93	-2.93	8.5	0.07	0.43	7.81
Semilla rugosa, cotiledón amarillo	112	108.93	3.07	9.42	0.08		
Semilla arrugada y verde	34	36.31	-2.31	5.33	0.14		
Chi ² calculada es m hipótesis (Ho).	enor que	chi ² tabu	ılada, p	or lo ta	nto, se ac	epta la	

Problema 9

Considerando los caracteres del problema 8 determine las proporciones genotípicas y fenotípicas de las siguientes cruzas:

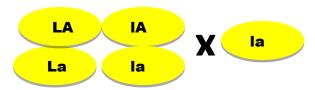

- a) LIAa x IIAa
- b) LIAa x Ilaa
- c) IIAA x LLAA
- d) LLAa x Llaa

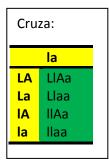
- Semilla lisa (L)
- Semilla rugosa (I)
- Cotiledones amiarillos (A)
- Cotiledones verdes (a)

a) LIAa X IIAa

Progenitores: LIAa X IIAa

Gametos:




Cruza:		
	IA	la
LA	LIAA	LlAa
La	LlAa	Llaa
IA	IIAA	llAa
la	IIAa	llaa

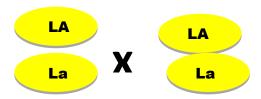
Proporción genotípica.	Proporción fenotípica.
1/8 LIAA	3/8 Lisa y
	amarilla
2/8 LIAa	1/8 Lisa y
	verde
1/8 Llaa	3/8 Rugosa
	y amarilla
2/8 IIAa	1/8 rugosa y
	verde
1/8 Ilaa	

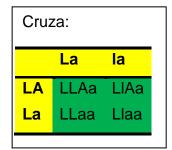
b) Progenitores: LIAa x Ilaa

Gametos:

Progenitores: IIAA X LLAA

Gametos:




Proporción genotípica	Proporción fenotípica
100% LIAA	100% Semilla lisa cotiledones amarillos

c) LLAa x Llaa

Progenitores: LLAa x Llaa

Gametos:

Proporciongenotipica	Proporción fenotipica
¼ LLAa	2/4 Semilla lisa cotiledones amarillos
¼ LIAa	2/4Semilla lisa cotiledones verdes
¼ LLaa	
1/4 Llaa	

Problema 10

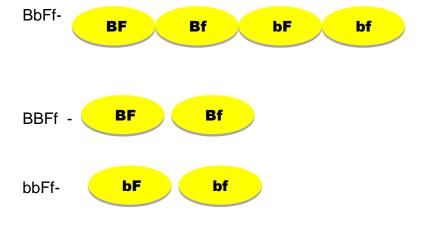
En la calabaza el color blanco del fruto está determinado por el alelo dominante (B), mientras que el color amarillo es producto del alelo recesivo (b). En otro cromosoma se ubica una característica que origina frutos en forma de disco (F) mientras que su alelo recesivo (f) produce frutos esféricos. Con estos datos responda las siguientes preguntas

a) ¿Qué fenotipos tendrán los siguientes genotipos?

BBFF - Respuesta Frutos blancos y en forma de disco

BbFF - Respuesta Fruto blancos en forma de disco

BBff - Respuesta Frutos blancos y en forma esférica


bbFf - RespuestaFrutos amarillos y en forma de disco.

Bbff - Respuesta Frutos amarillos en forma esférica.

b) Indica los genotipos de los siguientes fenotipos:

Fruto blanco de forma esférica -Respuesta BBff, Bbff
Fruto blanco de forma de disco - Respuesta BBFF, BbFF, BbFf, BbFf
Fruto amarillo de forma de disco - Respuesta bbFF, bbFf
Fruto amarillo de forme esférica - Respuesta bbff

c) ¿Qué tipos de gametos formaran los siguientes individuos?

d) ¿Qué tipo de descendencia habrá en la cruza:

B=Blanco

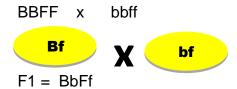
b=Amarillo

F=Disco

f=Esfericos

P= BbFf x Bbff

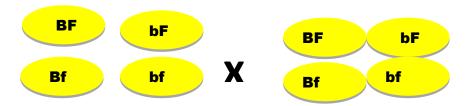
Gametos:


BF Bf Bf

	BF	Bf	bF	bf
Bf	BBFf	BBff	BbFf	Bbff
bf	BbFf	Bbff	bbFf	bbff

Proporciones Genotípicas	Proporciones Fenotípicas
1/8 BBFf ¼ BbFf	3/8 Fruto blanco y de disco
1/8 BBff¼ Bbff	3/8 Fruto blanco y esférico
1/8 bbFf	1/8 Fruto amarillo y de disco
1/8bbff	1/8 Fruto amarillo y esferico

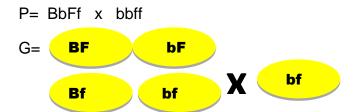
e) Si se cruza una variedad homociga blanca y disco con otra amarilla y esférica, indique las propiedades genotípicas y las fenotípicas del F1.



Proporciones Genotípicas	Proporciones Fenotípicas
1/1 BbFf	1/1 Fruto blanco y de disco

f) Indique las proporciones genotípicas y fenotípicas de la F2

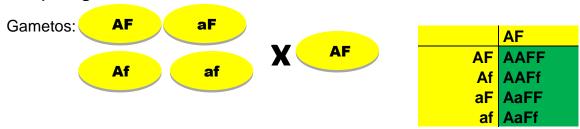
BbFf x BbFf


Gametos:

	BF	Bf	bF	bf
BF	BBFF	BBFf	BbFF	BbFf
Bf	BBFf	BBff	BbFf	Bbff
bF	BbFF	BbFf	bbFF	bbFf
bf	BbFf	Bbff	bbFf	bbff

Proporciones Genotípicas	Proporciones Fenotípicas
4/16 BbFf1/16 BBff 2/16 BBFf1/16 bbFF 2/16 BbFF1/16 bbff 2/16 Bbff 2/16 bbFf 1/16 BBFF	9/16 Fruto blanco y de disco 3/16 Fruto blanco y esferico 3/16 Fruto amarillo y de disco 1/16 Fruto amarillo y esferico

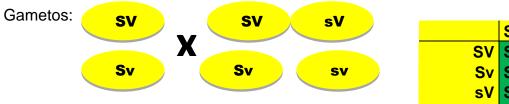
g) Realice cruza de prueba


	BF	Bf	bF	bf
bf	BbFf	Bbff	bbFf	bbff

Proporciones Genotípicas	Proporciones Fenotípicas
1/4 BbFf	1/4 Fruto blanco y de disco
1/4 Bbff	1/4 Fruto blanco y esferico
1/4 bbFf	1/4 Fruto amarillo y de disco
1/4 bbff	1/4 Fruto amarillo y esferico

Problema 11

Considerando los siguientes datos (A=semilla lisa a=semilla arrugada F=vaina entera f=vaina constreñida), realiza las siguientes cruzas. (Solo hasta la F1). Proporciona proporción genotípica y fenotípica de cada cruza.


A) Progenitores: AaFf x AAFF

Proporción genotípica	Proporción fenotípica
1/4 AAFF	
1/4 AAFf	100% semilla lisa y vaina entera
1/4 AaFF	
1/4 AaFf	

Datos: S=altas s=enanas, V=vaina verde v=vaina amarilla

B) Progenitores: SSVv x SsVv

	SV	Sv
SV	SSVV	SSVv
	SSVv	SSvv
sV	SsVV	SsVv
sv	SsVv	Ssvv

Proporción genotípica	Proporción fenotípica
1/8 SSVV	
2/8 SSVv	6/8 altas y vaina verde
1/8 SsVV	2/8 altas vaina amarilla
2/8 SsVv	
1/8 SSvv	
1/8 Ssvv	

Datos:(R=flores axiales r= flores terminales, G= cubierta gris g=cubierta blanca)

C) Progenitores: RrGg x rrgg

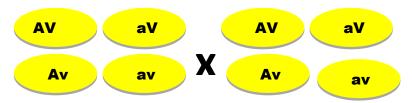

	rg
	RrGg
Rg	Rrgg
	rrGg
rg	rrgg

Proporción genotípica	Proporción fenotípica
¼ RrGg	1/4 flores axiales, cubierta gris
1/4 Rrgg	1/4 flores axiales cubierta blanca
¼ rrGg	1/4 flores terminales cubierta gris
1/4 rrgg	1/4 flores terminales cubierta blanca

Datos: (D= cotiledones amarillos d= cotiledones verdes, F= vaina entera f= vaina constreñida)

D) Progenitores: Ddff x DDFF

Gametos:


X	DF
Df	DDFf
df	DdFf

Proporción genotípica	Proporción fenotípica
½DDFf	100% cotiledones amarillos, vaina
½ DdFf	constreñida

Datos: (A=semilla lisa a=semilla arrugada, V=vaina verde v=vaina amarilla)

E) Progenitores: AaVv x AaVv

Gametos:

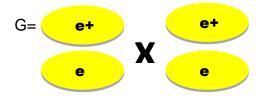
X	AV	Av	aV	av
AV	AAVV	AAVv	AaVV	AaVv
Av	AAVv	AAvv	AaVv	Aavv
aV	AaVV	AaVv	aaVV	aaVv
av	AaVv	Aavv	aaVv	aavv

Proporción genotípica	Proporción fenotípica
1/16 AAVV	9/16 semilla lisa vaina verde
2/16 AAVv	3/16 semilla lisa vaina amarilla
2/16 AaVV	3/16 semilla arrugada vaina verde
4/16 AaVv	1/16 semilla arrugada vaina amarilla
1/16 AAvv	
2/16 Aavv	
1/16 aaVV	
2/16 aaVv	
1/16 aavv	

PROBLEMAS DE CRUZAS DIHIBRIDAS CON Drosophila melanogaster

Problema 12

La cruza de dos moscas de color de cuerpo café silvestre (e⁺e) produjo una descendencia formada por 215 moscas cafés y 72 moscas de cuerpo obscuro (ébano). Con estos datos determina: a) genotipo de los progenitores b) proporción genotípica y fenotípica de la F1 c) realiza una prueba de chi cuadrada para establecer la confiabilidad de estos valores .


 e^+ =silvestre (e^+ e)(e^+ e $^+$) e= ébano (e e)

A) $P = e e \times e^+e +$

- a) Café silvestre x ébano (obscuro)
- b) Cruza F1

P= e+e X e+e

Proporciones genotípicas	Proporciones fenotípicas
50% e ⁺ e ⁺	75% silvestre
25% e e	25% ébano
25 % e ⁺ e	

X	e ⁺	е
e ⁺	e ⁺ e ⁺	e ⁺ e
е	e ⁺ e ⁺	ee

c) Prueba de chi²

Clases fenotípicas	Observados (o)	Esperados (e)	(o-e)	(o-e) ²	(o-e) ² /e
Silvestre(Café)	215	215.25	(25)	0.0625	0.00029
Obscuros	72	71.75	(.25)	0.0625	0.000054

c.1) chi tabulada

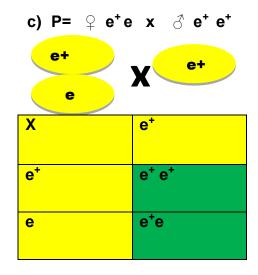
Valor de (chi) ² calculada	Valor de (chi) ² tabulada	Regla de decisión
0.000344	3.841	Se acepta Ho

Con los datos del problema 12 realice las siguientes cruzas:

a) P= ♀ e⁺e x ♂ e e

	е
e ⁺	e⁺ e
е	e e

Proporciones genotípicas	Proporciones fenotípicas
50% e⁺ e	50% silvestre
50%e e	50% ébano

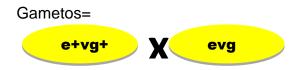

b) P= ♀ e⁺ e⁺ x ♂ e e

G= Cruza

	е
e ⁺	e ⁺ e

Proporciones genotipicas	Proporciones fenotipicas
e⁺e	100% silvestre

Proporciones genotipicas	Proporciones fenotipicas
e ⁺ e ⁺	50%Silvestre
e ⁺ e	50%silvestre

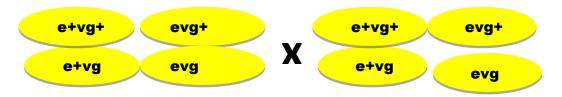

— F

Problema 13

En *Drosophiliamelanogaster*, el color obscuro del cuerpo (ébano) es producido por el gen recesivo (**e**), mientras que el color café silvestre por su alelo dominante (**e**⁺). En otro cromosoma se ubica la característica de las alas reducidas denominadas vestigiales (**vg**) mientras que las alas completas o silvestres son codificadas por su alelo (**vg**⁺).

a) Esquematice un cruzamiento entre una hembra silvestre para ambas características de cuerpo obscuro y alas vestigiales.

Progenitores= e+e+vg+vg+ x eevgvg


	evg
e+vg+	e+evg+vg

Proporciones genotípicas	Proporciones fenotípicas
1 e ⁺ e evg+vg	100% silvestre

b) F1 X F1

e+evg+vg x e+evg+vg

Gametos de la F2=

	e+vg+	e+vg	evg+	evg
e+vg+	e+e+vg+vg	e+e+vg+vg	e+evg+vg+	e+evg+vg
e+vg	e+e+vg+vg	e+e+vgvg	e+evg+vg	e+evgvg
evg+	e+evg+vg+	e+evg+vg	eevg+vg+	eevg+vg
evg	e+evg+vg	e+evgvg	eevg+vg	eevgvg

Proporción genotípica	Proporción fenotípica
1/16 e+e+vg+vg+	9/16 silvestres
2/16 e+e+vg+vg	3/16 cuerpo café y alas vestigiales
2/16 e+evg+vg	3/16 cuerpo ébano y alas silvestres
4/16 e+evg+vg	1/16 cuerpo ébano y alas vestigiales
1/16 e+e+vgvg	
2/16 e+evgvg	
1/16 eevg+vg+	
2/16 eevg+vg	
1/16 eevgvg	

Problema 14

En <u>Drosophila</u>, el color rojo de los ojos (se+) es dominante sobre el color café obscuro denominado sepia (se). En otro cromosoma se ubica una carácterística que determina la forma completa de las alas denominada silvestre (vg+), mientras que su gen alelo produce alas reducidas o vestigiales (vg). Resuelva los siguientes cruces hasta la generación F2 y determine las proporciones genotípicas y fenotípicas en cada generación.

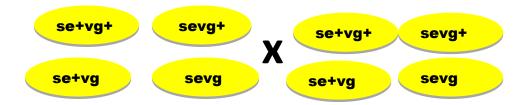
Suponga que los individuos son homocigotos.

Ojos rojos (se+) dominante Ojos obscuros o sepia (se) recesivo Alas completas (vg+) dominantes Alas vestigiales (vg) recesivo

a) Ojos rojos y alas completas x ojos obscuros y alas vestigiales

Progenitores: se+se+vg+vg+ X sesevgvg

Gametos: se+vg+ sevg


F1: se+sevg+vg

evg+
e+vg se+sevg+vg

Proporciones genotípicas	Proporciones fenotípicas
1 se ⁺ se vg+vg	100% silvestre

F1 X F1: se+sevg+vg X se+sevg+vg

Gametos:

Cruza:

	se+vg+	se+vg	sevg+	sevg
se+vg+	se+se+vg+vg+	se+se+vg+vg	se+sevg+vg+	se+sevg+vg
se+vg	se+se+vg+vg	se+se+vgvg	se+sevg+vg	se+sevgvg
sevg+	se+sevg+vg+	se+sevg+vg	sesevg+vg+	sesevg+vg
sevg	se+sevg+vg	se+sevgvg	sesevg+vg	sesevgvg

Proporción genotípica	Proporción fenotípica
1/16 se+se+vg+vg+	9/16 de ojos rojos y alas completas
2/16 se+se+vg+vg	3/16 de ojos rojos y alas vestigiales
2/16 se+sevg+vg+	3/16 de ojos obscuros y alas completas
4/16 se+sevg+vg	1/16 obscuros y alas vestigiales
1/16 se+se+vgvg	
1/16 sesevg+vg+	
2/16 sesevg+vg	
1/16 sesevgvg	

PROBLEMAS DE INTERACCIÓN GÉNICA

Problema 1

Una planta de jardín presenta dos variedades, una de flores rojas (R) y hojas alargadas (D) y otra de flores blancas (B) y hojas pequeñas (dd). El color de las flores es determinado por herencia intermedia, mientras que el tamaño de la hoja presenta dominancia completa. Suponga que cruza una planta de flores rojas y hojas alargadas con una de flores blancas y hojas pequeñas

- a) Indique la proporcion genotípica y fenotípica de la F1 y F2?
- b) ¿Qué proporción de las flores rojas y hojas alargadas de la F2 serán homocigas?

RR = Flor Roja

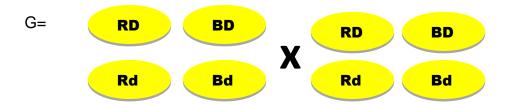
BB = Flor Blanca

RB = Flor Rosa

DD = hoja alargada

dd = hoja pequeña

P= RRDD x BBdd


G=

F1		
RD		
Bd RBDd		

Proporcióngenotípica	Proporción fenotípica
100 % RBDd	100% flor rosa hojas
	alargadas

P= RBDd x RBDd

F2					
	RD	Rd	BD	Bd	
RD	RRDD	RRDd	RBDD	RBDd	
Rd	RRDd	RRdd	RBDd	RBdd	
BD	RBDD	RBDd	BBDD	BBDd	
Bd	RBDd	RBdd	BBDd	BBdd	

Proporción genotípica	Proporción fenotípica
1/16 RRDD	6/16 flores rosas hojas
	alargadas
1/16 RRdd	3/16 flores rojas hojas
	alargadas
1/16 BBDD	3/16flores blancas hojas
	alargadas
1/16 BBdd	1/16 flores rojas hojas
	pequeñas
2/16 RRDd	1/16 flores blancas hojas
	pequeñas
2/16 RBDD	2/16 hojas rosas hojas
	pequeñas
4/16 RBDd	
2/16 RBdd	
2/168 BBDd	

Solo 1/16 de las flores rojas y hojas alargadas son homócigas

Determine las proporciones fenotípicas y genotípicas de las siguientes cruzas

a) RRDd x RBdd

Proporción	Proporción
genotípica	fenotípica
1/4 RRDd	1/4 flores rojas
	hojas
	alargadas
1/4 RRdd	1/4 flores rojas
	hojas
	pequeñas

	RD	Rd
Rd	RRDd	RRdd
Bd	RBDd	RBdd

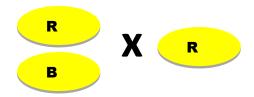
1/4 RBDd	1/4 flores		
	rosas hojas		
	alargadas		
1/4 RBdd	1/4 flores		
	rosas hojas		
	pequeñas		

b) BBDd x RBDd

	RD	Rd	BD	Bd
BD	RBDD	RBDd	BBDD	BBDd
Bd	RBDd	RBdd	BBDd	BBdd

Proporción genotípica	Proporción fenotípica
1/8 RBDD	3/8 Flores rosas hojas alargadas
1/8 RBdd	1/8 flores rosas hojas pequeñas
1/8 BBDD	3/8 flores blancas hojas alargadas
1/8 BBdd	1/8 flores blancas hojas pequeñas
2/8 RBDd	
2/8 BBDd	

c) RBDd x BBdd

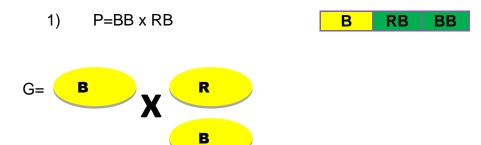

	RD	Rd	BD	Bd	
Bd	RBDd	RBdd	BBDd	BBdd	

Proporción genotípica	Proporción fenotípica
1/4 RBDd	1/ 4 flores rosas hojas alargadas
1/4 RBdd	1/ 4 flores rosas hojas pequeñas
1/4 BBDd	1/ 4 flores blancas hojas alargadas
1/4 BBdd	1/ 4 flores blancas hojas pequeñas

Problema 2

El color de las flores de *Antirrhinum* puede ser rosa (RB), blanco (BB) o rojo (RR). Plantee la cruza entre una planta de flores rojas y una de flores blancas y obtenga la proporción fenotípica y genotípica de la F1. Si obtuviera una descendencia de 126 plantas de flores rojas y 131 de flores rosas ¿Cuál sería el valor de chi cuadrada para estos valores?

P= RR x RB



· · · · · · · · · · · · · · · · · · ·	Proporciones Fenotípicas
½ RB	½ rosas
½ RR	½ rojas

Clases fenotípicas	Valores observados	Valores esperados	(o- e)	(o- e) ²	(o- e) ² /e	Valor de Chi ² calculada	Valor de Chi ² tabulada
126 rojas (½) 131 rosas(½)	126 131	128.5 128.5	-2.5 2.5	6.25 6.25	0.0486 0.0486	0.0972	3.8

Realice las cruzas señaladas, obtenga la proporción genotipica y fenotípica y los valores de chi cuadrada para los datos indicados

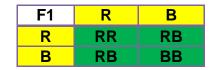
F1	R	В
----	---	---

Proporciones	Proporciones
Genotípicas	Fenotípicas
½ RB	½ rosas
½ BB	½ blancas

Clases fenotípicas	Valores observados	Valores esperados	(o- e)	(o- e) ²	(o- e) ² /e	Valor de Chi ² calculada	Valor de Chi ² tabulada
88blancas(½) 92 rosas (½)		90 90	-2 2	4 4	0.04 0.04	0.08	3.8

Proporciones	Proporciones
Genotípicas	Fenotípicas
1 RB	100% rosas

P= RB x RB 43blancas, 39rojas y 83 rosas


G=

R

R

B

B

· · · · · · · · · · · · · · · · · · ·	Proporciones Fenotípicas
1/4 RR	¼ rojas
2/4 RB	2/4 rosas
1/4 BB	1/4 blancas

clases fenotípicas	Valores observados	Valores esperados	(o-e)	(o-e) ²	(o-e) ² /e	Valor de Chi ² calculada	Valor de Chi ² tabulada
43blancas(1/4) 39rojas(1/4) 83 rosas(2/4)	43 39 83	41.25 41.25 82.5	1.75 -2.25 0.5	3.06 5.06 0.25	0.074 0.122 0.003	0.199	5.9

ALELOS MÚLTIPLES

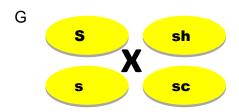
Problema 3

La herencia del color de la piel en las reses, depende de una serie de alelos múltiples. El alelo "S" determina una banda de color blanco alrededor del cuerpo condición que se conoce como cinturón holandés, el alelo "sh" produce manchas de tipo Hereford, el alelo "sc" produce color solido, mientras que el gene "s" origina manchas tipo Holsetein. Dichos alelos manifiestan la siguiente **jerarquía de dominancia**: **S > sh > sc > s.** Suponga que cruza machos homocigóticos de cinturón holandés, con hembras tipo Holstein. Si luego selecciona hembras de la F1 y las cruza con machos tipo Hereford de genotipo "shsc" ¿Cuál será la proporcion genotípica y fenotípica de la descendencia.

a) Machos con cinturón holandés x hembras tipo Holstein

SS: cinturón holandés ss: Manchas Holstein

P: SS x ss

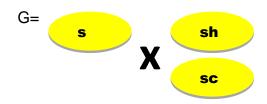


F1	S
S	Ss

Proporcion	Proporciones	
Genotípica	Fenotípicas	
Ss	100% Cinturó holande	

Las hembras de la F1 son cruzadas con machos tipo Hereford de genotipo "shsc

P:Ss x sh sc


F1	S	S
sh	Ssh	shs
SC	Ssc	scs

Proporciones Genotípicas		
1/4	Ssh	
1/4	Ssc	
1/4	shs	
1/4	scs	

Proporciones Fenotípicas		
2/4	Cinturón	
	holandés	
1/4	Hereford	
1/4	Color	
	sólido	

Obtenga las proporciones genotípicas y fenotípicas de las siguientes cruzas.

A) ss X shsc

F1	S
sh	shs
SC	SCS

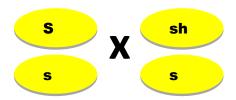
Proporciones fenotípicas		
1/2	Herford	
1/2 Holstein		

Proporciones genotípicas		
1/2	shs	
1/2	scs	

B) shs X scs

G=
sh
sc
s
s

Proporciones genotípicas	
1/4	shsc
1/4	shs
1/4	SS
1/4	scs


Proporciones fenotípicas		
2/4	hereford	
1/4	Solido	
1/4	Holstein	

F1	S	sh
SC	scs	shsc
S	SS	shs

Ss: cinturonholandessh: Hereford

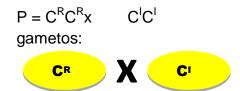
s: holstein

C) SsXshs

F1	S	s
sh	Ssh	shs
S	Ss	SS

Proporciones		
genotípicas		
1/4	Ssh	
1/4	Ss	
1/4	shs	
1/4	SS	

Proporciones fenotípicas	
2/4	Cinturón holandés
1/4	Hereford
1/4	Holstein


Problema 4

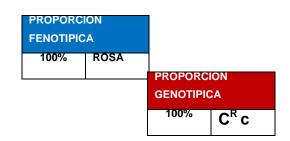
El color de la concha de un molusco esta controlado por una serie de alélos que determina los siguientes fenotipos: C^M marrón, C^R rosa, C^I amarillo intenso y c amarillo pálido. El orden de dominancia de esos genes alelos es el siguiente: rosa > amarillo intenso > marrón > amarillo pálido. Se hicieron cruzamientos entre varias razas, obteniendo la siguiente descendencia:

PARENTALES	F1
Rosa x amarillo intenso	ROSA
Rosa x amarillo pálido	ROSA
Amarillo intenso x amarillo pálido	A. INTENSO
Marrón x rosa	ROSA

Realice las cruzas señaladas en el cuadro y anote las proporciones fenotípicas y genotípicas de cada una de ellas.

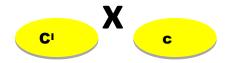
a) Rosa x amarillo intenso

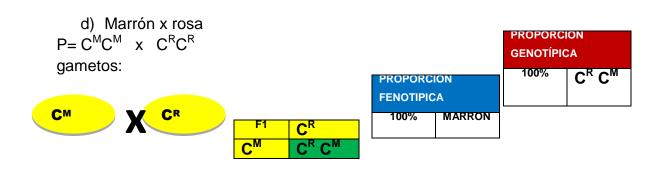
PROPORCION		
FENOTIPICA		
100%	ROSA	



b) Rosa x amarillo pálido P= C^RC^R x cc

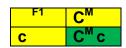
gametos





c) Amarillo Intenso x amarillo pálido

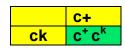
P= C^I C^Ix cc Gametos:



e) Marrón x amarillo pálido C^MC^Mxcc Gametos:

Problema 5

En el conejillo de indias, existen una serie de alelos multiples que determinan el color del pelaje. Las combinaciones homocigoticas de dichos alelos producen los siguientes fenotipos: negro (c⁺c⁺), sepia (c^kc^k), crema (c^dc^d), albino (c^ac^a):


Suponiendo que estos alelos presentan el siguiente orden de dominancia : $c^+>c^k>c^d>c^a$. ¿Que proporciones fenotípicas esperaría de los siguientes cruzamientos?

a) negro homocigótico x sepia homocigótico

$P = c^+c^+ X c^k c^k$

Gametos:

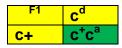
PROPORCION		PROPORC	ION
FENOTIPICA		GENOTIPIO	CA
100%	NEGRO	100%	c+ck

b) negro homocigótico x crema homocigótico

$$P = c^+c^+ X c^dc^d$$

Gametos:

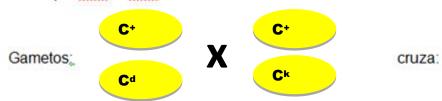
F1	Cd
C+	C ⁺ C ^d


PROPORCION FENOTIPICA		
100%	NEGRO	

PROPORCION		
GENOTIPICA		
100%	C+ C _q	

- c) negro homocigótico x albino homocigótico
- d) $P = c^+c^+ X c^a c^a$

Gametos



PROPORCION		
GENOTIPICA		
100%	c ⁺ c ^a	

D) F1 del inciso A X F1 del inciso B

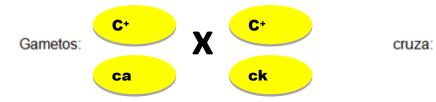
Genotipo: c+ck X c+cd

Proporción genotípica	Proporción fenotípica
25%c+c+ 25%c+ck	75% negro
25%c+cd	25%sepia
25%cdck	

	C+	ck
c+	C+C+	c+ck
cd	c+cd	cdck

F) F1 del inciso C X F1 del inciso B

Genotipo: c+ca X c+cd


Gametos: cruza:

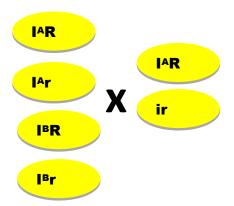
	C+	ca
C+	C+C+	<u>c+cd</u>
ca	<u>c+ca</u>	cdca

Proporcion g	enotipica	Proporcion fenotipica
25%c+c+	25%c+cd	75%negro
25%c+ca	25%cdca	25%crema

E) F1 del inciso C X F1 del inciso A

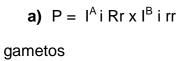
	c+	ca
c+	c+c+	c+ca
<u>ck</u>	<u>c+ck</u>	cack

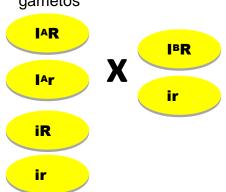
Proporción genotípica	Proporción fenotípica
25%c+c+ 25%ckca	75% negro
25%c+ca	25%sepia
25%c+ck	


Tipos sanguíneos

Problema 6

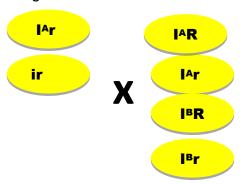
Suponga que un hombre de grupo sanguíneo AB Rh+ (heterocigo) se casa con una mujer de grupo A Rh- cuyo padre era grupo 0. ¿Cuál será la proporción de los distintos grupos sanguíneos y Rh de los hijos de este matrimonio?


$$P = I^A I^B Rr \times I^A i rr$$


Gametos:

Proporcione	Proporciones genotípicas		es fenotípicas
1/8	I ^A I ^A Rr	2/8	A+
1/8	I ^A I ^A rr	2/8	A-
1/8	I ^A I ^B Rr	1/8	AB+
1/8	I ^A I ^B rr	1/8	AB-
1/8	I ^A i Rr	1/8	B+
1/8	l ^A i rr	1/8	B-
1/8	I ^B i Rr		
1/8	l ^B i rr		

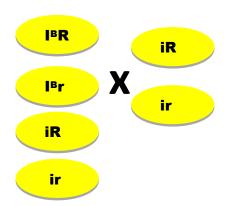
A) Obtenga las proporciones genotípicas y fenotípicas de los descendientes de los siguientes matrimonios.


	I ^A R	l ^A r	i R	i r
l ^B r	I ^A I ^B	I ^A I ^B		l ^B i rr
	Rr	rr	Rr	
ir		l ^A i rr	i i Rr	i i rr
	Rr			

Proporción genotípica		Proporción fenotípica	
1/8	I ^A I ^B Rr	1/8	AB+
1/8	I ^A I ^B rr	1/8	AB-
1/8	I ^B i Rr	1/8	A+
1/8	l ^B i rr	1/8	Α-
1/8	I ^A I Rr	1/8	B+
1/8	l ^A i rr	1/8	B-
1/8	i i Rr	1/8	0+
1/8	i i rr	1/8	0-

	I ^A R	l ^A r	I ^B R	l ^B r
I ^A r	I ^A I ^A	I ^A I ^A	I ^A I ^B	I ^A I ^B

i r	I ^A i	I ^A i	l ^B i	l ^B i
	Rr	rr	Rr	rr


b) I^A i rr x I^A I^B Rr gametos

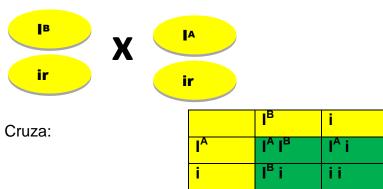
Proporcion	es genotípicas	Proporcione	es fenotípicas
1/8	I ^A I ^A Rr	2/8	A+
1/8	I ^A I ^A rr	2/8	A-
1/8	I ^A I ^B Rr	1/8	AB+
1/8	I ^A I ^B rr	1/8	AB-
1/8	I ^A i Rr	1/8	B+
1/8	l ^A i rr	1/8	B-
1/8	I ^B i Rr		
1/8	I ^B i rr		

c) I^B i Rr x i i Rr

Gametos

	I ^B R	l ^B r	i R	i r
i R	l ^B i	l ^B i	i i	ii
	RR	Rr	RR	Rr
i r	l ^B i	l ^B i	ii	ij
	Rr	rr	Rr	rr

Proporció	Proporción genotípica		Proporción fenotípica	
2/8	I ^B i Rr	3/8	B+	
2/8	i i Rr	1/8	B-	
1/8	I ^B i RR	3/8	0+	
1/8	l ^B i rr	1/8	0-	
1/8	i i RR			
1/8	i i rr			


Problema 7

Una pareja tuvo 4 hijos con los siguientes tipos sanguíneos: A, B, AB y O. Sin embargo el padre argumenta que el niño con tipo sanguíneo O no es su hijo. ¿Podría tener razón? Pruebelo haciendo la cruza correspondiente

Estos fenotipos solo son posibles si uno de los conyuges es de tipo sanguíneo A y el otro B, ambos heterócigos como se muestra en la siguiente cruza.

$$P = I^A i X I^B i$$

Gametos:

Proporció	Proporción genotípica		Proporción fenotípica	
1/4	I ^A I ^B	1/4	AB	
1/4	I ^A i	1/4	Α	
1/4	l ^B i	1/4	В	
1/4	ii	1/4	0-	

En una clínica se mezclaron por error cuatro recién nacidos. Los grupos sanguíneos de estos niños son: O (Julia), A (Tomás), B (Fernando), AB (Alison). Los grupos sanguinos de las cuatro parejas de padres son:

Pareja uno: ♀AB x O♂

Pareja dos: ♀A x ♂O

Pareja tres: ♀A x ♂AB

Pareja cuatro: ♀O x ♂O

¿Cuál sería el hijo más probable de cada pareja?.

Pareja uno podrían ser padres de Tomás o Fernando

P1: **I^A I^B** x ii

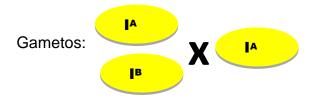
Gametos:

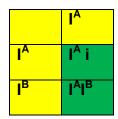
Cruza:


Proporción genotípica	Proporción fenotípica
50% I ^A	50% A
50% I ^B	50% B

Pareja dos: Son los padres más probables de Tomás.

Gametos:


Cruza:


100% I ^A i	100% A

Pareja tres: Podrían ser padres de Tomás o de Alison

 $I^A I^A \times I^A I^B$

Cruza:

Proporcion genotipica	Proporcion fenotipica
50% : I ^A I ^A	50% A
50% : I ^A I ^B	50% AB

La pareja cuatro son los padres de Julia

P = ii x ii

Gametos:

Cruza:

Proporcion genotipica	Proporcion fenotipica
100% ii	100% O

EPISTASIS

Suponga que en una variedad de mazorcas de maíz el alelo dominante del locus A, produce aleurona de color purpura, lo que impide ver el color amarillo del endospermo, que es visible solo cuando la aleurona es incolora (aa). El color amarillo del endospermo es controlado por el locus B y el alelo recesivo b bloquea la síntesis de dicho pigmento. Señale las proporciones genotípicas y fenotípicas de las siguientes cruzas. (Este es un problema de epistasis dominante)

A = púrpura a= alelurona incolora B= pigmento amarillo b= no produce pigmento

a) P: AaBbXaaBb. (púrpura X amarillo)

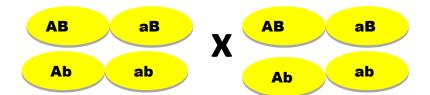
	аВ	ab
AB	AaBB	AaBb
	púrpura	púrpura
Ab	AaBb	Aabb
	púrpura	púrpura
aB	aaBB	aaBb
	amarilo	amarillo
ab	aaBb	aabb
	amarillo	incolora

Proporción fenotípica
4/8 purpura 3/8 amarillo 1/8 incolora

b) P: aaBb X aaBb.

	aB	ab
aB	aaBB	aaBb
	amarillo	amarillo
ab	aaBb	aabb
	amarillo	incolora

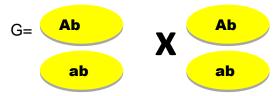
Proporción genotípica	Proporción fenotípica
1/4 aaBB	3/4 amarillo
2/4 aaBb	1/4 incolora
1/4 aabb	


c) P: AaBb X aabb

G= X ab AB Ab aВ ab AB Ab aВ ab AaBb Aabb aabb aaBb ab incolora púrpura púrpura amarilla

Proporción genotípica	Proporción fenotípica
1/4 AaBb 1/4 Aabb 1/4 aaBb 1/4 aabb	2/4 purpura 1/4 amarillo 1/4 incolora

d) P: AaBb X AaBb


G=

	AB	Ab	аВ	ab
AB	AABB	AABb	AaBB	AaBb
	púrpura	púrpura	púrpura	púrpura
Ab	AABb	Aabb	AaBb	Aabb
	púrpura	púrpura	púrpura	púrpura
aB	AaBB	AaBb	aaBB	aaBb
	púrpura	púrpura	amarillo	amarillo
ab	AaBb	Aabb	aaBb	Aabb
	púrpura	púrpura	amarillo	incolora

Proporción genotípica	Proporción fenotípica
1/16 AABB	12/16 purpura
1/16Aabb	3/16 amarillo
1/16aaBB	1/16 incolora
1/16aabb	
4/16 AaBb	
2/16 aaBb	

e) P: Aabb X Aabb.

	Ab	ab
Ab	Aabb	Aabb
	púrpura	púrpura
ab	Aabb	aabb
	púrpura	incolora

Proporción genotípica	Proporción fenotípica
1/4 AAbb 2/4 Aabb 1/4 aabb	3/4 purpura 1/4 incolora

Problema 10

La herencia de color del pelaje en perros de la raza labrador es codificada por el gen **B** que produce color negro, mientras que su alelo **b** codifica para el color marrón. En otro cromosoma se localiza el gen **F** que permite la aparición de color mientras que su alelo **f** en condición homóciga, suprime la acción de los alelos B y b, ello produce perros de color oro. Realice las cruzas descritas a continuación y obtenga la proporción genotípica y fenotípica de cada una de ellas. (Este es un ejemplo de epistasis recesiva, en este caso el par de genes

recesivos ff, suprime la expresión de los genes F y B en cualquiera de sus combinaciones).

B = negro

b= marrón

F= aparición de color

ff= color oro

a. P= FfBb X ffBb

	fB	fb
FB	FfBB	FfBb
	negro	negro
Fb	FfBb	Ffbb
	negro	marrón
fB	ffBB	ffBb
	oro	oro
fb	ffBb	ffbb
	oro	oro

Proporción genotípica	Proporción fenotípica
1/8 FfBB 1/8 ffBB	4/8 oro 3/8 negro
1/8 Ffbb	1/8 marrón
1/8 ffbb 2/8 FfBb2/8 ffBb	

b. P: ffBb X ffBb.

	fB	fb
fB	ffBB	ffBb

	oro	oro
fb	ffBb	ffbb
	oro	oro

Proporción genotípica	Proporción fenotípica
1/4 ffBB 2/4 ffBb	100% oro
1/4 ffbb	

c. P: FfBb X ffbb.

	FB	Fb	fB	fb
fb	FfBb	Ffbb	ffBb	ffbb
	negro	negro	oro	oro

Proporción genotípica	Proporción fenotípica
1/4 FfBb	2/4 oro
1/4 Ffbb	24 negro
1/4 ffBb	
1/4 ffbb	

d. P: FfBb X FfBb.

G=	FB	fB		FB	fB
G=			V		
	Fb	fb	X	Fb	fb
	LD	110		LD	110

	FB	Fb	fB	fb
FB	FFBB	FFBb	FfBB	FfBb
	negro	negro	negro	negro

Fb	FFBb	FFbb	FfBb	Ffbb
	negro	marrón	negro	marrón
fB	FfBB	FfBb	ffBB	ffBb
	negro	negro	oro	oro
fb	FfBb	Ffbb	ffBb	ffbb
	negro	marròn	oro	oro

Proporción genotípica	Proporción fenotípica
1/16 FFBB	9/16 negro
1/16 FFbb	4/16 oro
1/16 ffBB	3/16 marrón
1/16 ffbb	
4/16 FfBb	
2/16 ffBb	

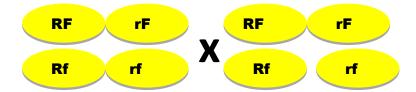
e. P: Ffbb X Ffbb.

	Fb	fb
Fb	FFbb	Ffbb
	marrón	marrón
fb	Ffbb	Ffbb
	marrón	oro

Proporción genotípica	Proporción fenotípica
1/4 FFbb	3/4 marrón
2/4 Ffbb	1/4 oro
1/4 ffbb	

La calabacita de verano *Cucurbita pepo* presenta tres fomas del fruto: forma de disco, (R_F_), forma redonda (rrF_ o R_ff), y forma alargada rrff. Una línea homóciga de forma disco se cruzo con una variedad alargada. Toda la F1 tuvo aspecto de disco. La autofecundación de la F1 produjo 45 calabazas de forma de disco, 30 redonda y 5 alargadas. Realice la cruza señalada en el problema y obtenga las proporciones genotipicas y fenotípicas de la F1 y la F2. Señale a que tipo de proporción corresponden los valores obtenidos. (Este es un problema de genes duplicados con efecto acumulativo). Nota: el guión significa que el genotipo puede ser homócigo o heterócigo)

a) P= RRFF X rrrff


Gametos

	RF
rf	RrFf

Proporcion genotipica	Proporcion fenotipica
100% RrFf	100% disco

P= RrFf X RrFf

	RF	Rf	rF	rf
RF	RRFF	RRFf	RrFF	RrFf
	disco	disco	disco	disco

Rf	RRFf	RRff	RrFf	Rrff
	disco	redonda	disco	redonda
rF	RrFF	RrFf	rrFF	rrFf
	disco	disco	redonda	redonda
rf	RrFf	Rrff	rrFf	rrff
	disco	redonda	redonda	alargada

Proporción genotípica	Proporción fenotípica
1/16 AABB	9/16 disco
1/16Aabb	6/16 redonda
1/16aaBB	1/16 alargada
1/16aabb	
4/16 AaBb	
2/16 aaBb	

Realice las cruzas que se indican a continuación y obtenga la proporción genotípica y fenotípica de cada una de ellas:

a. P= RrFf X rrFf

Gametos

RF Rf	rF rf X	rF rf
	rF	rf
RF	RrFF	RrFf
	disco	disco
Rf	RfFf	Rrff
	disco	redonda
rF	rrFF	rrFf
	redonda	redonda
rf	ffFf	rrff
	redonda	alargada

Proporción genotípica	Proporción fenotípica
1/8 FfBB	3/8 disco
1/8 ffBB	4/8 redonda
1/8 Ffbb	1/8 alargada

1/8 ffbb	
2/8 FfBb	
2/8 ffBb	

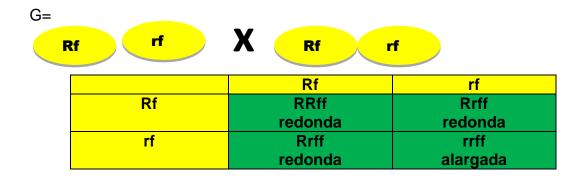
b. P: ffBb X ffBb.

G=	fB	fb	X	fB	fb	

	rF	rf
rF	rrFF	rrFf
	redonda	redonda
rf	rrFf	rrff
	redonda	alargada

Proporción genotípica	Proporción fenotípica
1/4 rrFF	3/4 redonda
2/4 rrFf	¼ alargada
1/4 rrff	

c. P: RrFf X rrff.


					\	
G=	RF	Rf	rF	rf	X	rf

	RF	Rf	rF	rf
rf	RrFf	Rrff	rrFf	rrff
	disco	redondo	redondo	alargado

Proporción genotípica	Proporción fenotípica
1/4 FfBb	1/4 disco
1/4 Ffbb	2/4 redondo

1/4 ffBb	1/4 alargado
1/4 ffbb	_

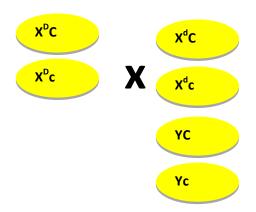
a. P: Rrff X Rrff.

Proporción genotípica	Proporción fenotípica
1/4 FFbb	3/4 redonda
2/4 Ffbb	1/4 alargada
1/4 ffbb	

CARACTERES LIGADOS E INFLUIDOS POR EL SEXO

Determinación del sexo XX-XY

Problema 1

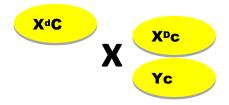

1.-En humanos, un gen recesivo ligado al sexo (d), produce ceguera a los colores, circunstancia conocida como daltonismo, mientras que su alelo dominante (D) codifica para visión normal. En otro cromosoma, un gen influido por el sexo determina ausencia de pelo o calvicie (c), dicho gen se comporta como dominante en hombres y recesivo en mujeres. Suponga que un hombre con ceguera a los colores y calvo (heterocigótico) se casa con una mujer con cabello cuya madre era calva y con visión normal, y tienen descendencia. Esquematice la cruza correspondiente y señale la proporción fenotípica y genotípica de la descendencia. (En este cruza se supone que la mujer es homóciga para la visión)

D: normal (sin ceguera)

d: ceguera C: con pelo c: calvo

 $P = X^D X^D Cc x X^d Y Cc$

Gametos:

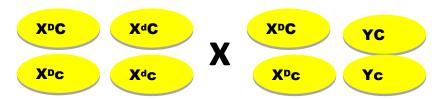

Cruza:

		7. 0		Yc
	X ^D X ^d CC			
XDc	X ^D X ^d Cc	X ^D X ^d cc	X ^D YCc	X ^D Ycc

Proporciones fenotípicas
Mujeres:
3/8 con pelo y visión normal
1/8 calva y visión normal
·
Hombres:
3/8 calvos y visión normal
1/8 con pelo y visión normal

- B) Obtenga la proporción genotípica y fenotípica de las siguientes cruzas.
- a) X^dX^dCC x X^DY cc (mujer daltónica y con pelo por hombre normal y calvo)

Gametos:



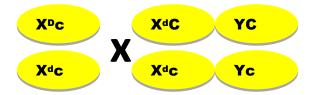
	X^Dc	Yc
X^dC	X^DX^dCc	X^dYCc

Proporciones genotípicas	Proporciones fenotípicas
½ X ^D X ^d Cc ½ X ^d YCc	Todas las mujeres con pelo y visión normal
/2 X 1 CC	Todos los hombres calvos y con ceguera a los colores

b) $X^DX^dCcxX^DY$ Cc (mujer con visión normal y con pelo por hombre de visión normal y calvo)

Gametos:

Cruza:

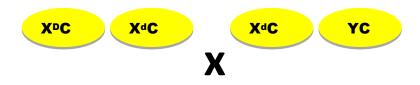

	X^DC	X^Dc	<i>X</i> ^d <i>C</i>	X^dc
X^DC	$X^D X^D CC$	$X^D X^D Cc$	X^DX^dCC	X^DX^dCc
X^Dc	X^DX^DCc	X^DX^Dcc	X^DX^dCc	X^DX^dcc
YC	X^DYCC	X^DYCc	X^dYCC	X^dYCc
Yc	X^DYCc	X^DYcc	X ^d yCc	X^dYcc

Proporciones genotípicas	Proporciones fenotípicas
$1/16 X^D X^D CC$	Mujeres:
$2/16 X^D X^d Cc$	
$1/16 X^D X^D cc$	6/8 con visión normal y pelo
$1/16X^DX^dCC$	2/8 con visión normal y calvas

$2/16X^DX^dCc$	Hombres:
$1/16 X^D X^d cc$	
1/16 <i>X^DYCC</i>	4/16 visión normal y calvos,
$2/16 X^D Y C c$	4/16 daltónicos y calvos
1/16 <i>X^dYcc</i>	
1/16 X ^d YCC	
2/16 <i>X^DYCc</i>	
1/16 <i>X^DYcc</i>	

c) $X^D X^d cc$ x $X^d Y Cc$ (mujer con visión normal y calva por hombre daltónico y calvo)

Gametos



	<i>X</i> ^d <i>C</i>	X^dc	Y C	Yc
$X^D c$	X^DX^dCc	X^DX^dcc	X^DYCc	X^DYcc
X^dc	X^dX^dCc	X^dX^dcc	X^dYCc	X^dYcc

Proporciones genotípicas	Proporciones fenotípicas
1/8 X ^D X ^d Cc 1/8X ^D X ^d cc 1/8 X ^d X ^d Cc, 1/8 X ^d X ^d cc 1/8 X ^D Y Cc 1/8 X ^d Y Cc 1/8 X ^D Y cc 1/8 X ^d Y cc	Mujeres: 1/8 visión normal y con pelo 1/8 visión normal y calva 1/8 ciega y con pelo, 1/8 ciega y calva Hombres: 2/8 visión normal y calvo 2/8 ciego y calvo

d) $X^D X^d Cc$ x $X^d Y Cc$ (mujer normal y con pelo por hombre daltónico y calvo)

Gametos:

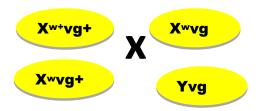
	X^DC	$X^D c$	X^dC	X^dc
X ^d C	X^DX^dCC	X^DX^dCc	X^dX^dCC	X^dX^dCc
X^dc	X^DX^dCc	X^DX^dcc	X^dX^dCc	X^dX^dcc
YC	X^DYCC	X^DYCc	X^dYCC	X^dYCc
Yc	X^DYCc	X^DYcc	X ^d YCc	X^dYcc

Problema 2

En la mosca de la fruta el color blanco de los ojos es ocasionado por un carácter recesivo ligado al sexo (w),mientras que su alelo (w+) produce ojos color rojo. En otro cromosoma se encuentra un carácter que determina la forma de las alas reducidas (vg) mientras que su alelo silvestre produce alas completas o normales (vg+). Suponga que una hembra de ojos blancos y alas completas (heteróciga) se cruza con un macho de ojos rojos y alas completas (heterócigo) Señale cuáles serían las proporciones genotípicas y fenotípicas de la descendencia

w+ ojos rojos, w = ojos blancos, vg+ = alas completas, vg = alas reducidas

$$P = X^w X^w vq + vq \times X^{w+} Y vq + vq$$


	X ^w vg+	X ^w vg
X ^{w+} vg+	X ^{w+} X ^w vg+vg+	X ^{w+} X ^w vg+vg
X ^{w+} vg	X ^{w+} X ^w vg+vg	X ^{w+} X ^w vgvg
Yvg+	X ^w Yvg+vg+	X ^w Yvg+vg
Yvg	X ^w Yvg+vg	X ^w Yvgvg

PROPORCIÓN GENOTIPICA	PROPORCIÓN FENOTIPICA
HEMBRAS	HEMBRAS
1/8 X ^{w+} X ^w vg+vg+	3/8 ojos rojos alas normales
2/8 X ^{w+} X ^w vg+vg 1/8 X ^{w+} X ^w vgvg	1/8 ojos rojos alas reducidas
1/8 X X VgVg	MACHO
MACHOS	
	3/8 ojos blancos alas
1/8 X ^w Yvg+vg+	normales
2/8 X ^w Yvg+vg	1/8 ojos blancos alas
1/8 X ^w Yvgvg	reducidas

Realiza las cruzas que se indican a continuación:

(A) P= $X^{w+}X^{w}$ vg+ vg+ \mathbf{x} X^{w} Y vgvg (hembra de ojos rojos y alas completas por machos de ojos blancos y alas reducidas)

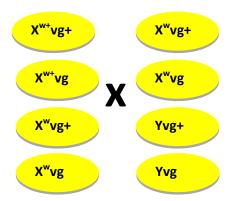
Gametos:



	X ^w vg	Yvg
X ^{w+} vg+	X ^{w+} X ^w vg+vg	X ^{w+} Yvg+vg
X ^w vg+	X ^w X ^w vg+vg	X ^w Yvgvg

Hembras
1/4 X^{w+}X^wvg+vg
1/4 ojos rojos alas normales
1/4 X^wX^wvg+vg
1/4 ojos blancos alas
normales

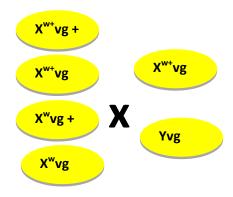
Machos
1/4 X^wYvg+vg
Machos
1/4 X^{w+}Yvg+vg
1/4 ojos rojos alas normales
1/4 ojos blancos alas
normales


(C) P= $X^{w+}X^{w}$ vg+ vg **x** X^{w} Y vgvg (hembra de ojos rojos y alas completas por macho de ojos blancos y alas reducidas)

	X ^{w+} vg+	X ^{w+} vg	X ^w vg+	X ^w vg
X ^w vg	X ^{w+} X ^w vg+vg	X ^{w+} X ^w vgvg	X ^w X ^w vg+vg	X ^w X ^w vgvg
Yvg	X ^{w+} Yvg+vg	X ^{w+} Yvgvg	X ^w Yvg+vg	X ^w Yvgvg

(D) P= $X^{w+}X^{w}$ vg+ vg XX^{w} Y vg+vg (hembra de ojos rojos y alas completas por macho de alas blancas y alas completas)

Gametos


Cruza:

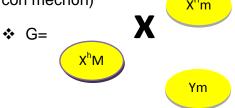
	X ^w vg+	X ^w vg	Yvg+	Yvg
X ^{w+} vg+	X ^{w+} X ^w vg+vg+	X ^{w+} X ^w vg+vg	X ^{w+} Yvg+vg+	X ^{w+} Yvg+vg
X ^{w+} vg	X ^{w+} X ^w vg+vg	X ^{w+} X ^w vgvg	X ^{w+} Yvg+vg	X ^{w+} Yvgvg
X ^w vg+	X ^w X ^w vg+vg+	X ^w X ^w vg+vg	X ^w Yvg+vg+	X ^w Yvg+vg
X ^w vg	X ^w X ^w vg+vg	X ^w X ^w vgvg	X ^w Yvg+vg	X ^w Yvgvg

PROPORCIÓN GENOTIPICA	PROPORCIÓN FENOTIPICA
Hamahasa	Hambrea
Hembras	Hembras
1/16 X ^{w+} X ^w vg+vg+	3/16 ojos ojos alas normales
2/16 X ^{w+} X ^w vg+vg	3/16 ojos blancos alas normales
1/16 X ^w X ^w vg+vg+	1/16 ojos rojos alas reducidas
2/16 X ^w X ^w vg+vg	1/16 ojos blancos alas reducidas
1/16 X ^{w+} X ^w vgvg	•
1/16 X ^w X ^w vgvg	Machos
	3/16 ojos rojos alas normales
Machos	3/16 ojos blancos alas normales
1/16 X ^{w+} Yvg+vg+	1/16 ojos rojos alas reducidas
2/16 X ^{w+} Yvg+vg	1/16 ojos blancos alas reducidas
1/16X ^w Yvg+vg+	·
2/16 X ^w Yvg+vg	
1/16 X ^{w+} Yvg+vg	
1/16 X ^w Yvqvq	

(D) P= $X^{w+}X^{w}$ vg+ vg x X^{w+} Y vgvg (hembra de ojos rojos y alas completas por macho de ojos rojos y alas reducidas)

Gametos:

Cruza:


	X ^{w+} vg	Yvg
X ^{w+} vg+	X ^{w+} X ^{w+} vg+vg	X ^{w+} Yvg+vg
X ^{w+} vg	X ^{w+} X ^{w+} vgvg	X ^{w+} Yvgvg
X ^w vg+	X ^{w+} X ^w vg+vg+	X ^w Yvg+vg
X ^w vg	X ^{w+} X ^w vgvg	X ^w Yvgvg

PROPORCIÓN GENOTIPICA	PROPORCIÓN FENOTIPICA
Hembras	Hembras
1/8 X ^{w+} X ^{w+} vg+vg	2/8 ojos ojos alas normales
1/8 X ^{w+} X ^{w+} vgvg	2/8 ojos rojos alas reducidas
1/8 X ^{w+} X ^w vg+vg+	, ,
1/8 X ^{w+} X ^w vgvg	
"O'X X vgvg	Machos
Machos	1/8 ojos rojos alas normales
1/8 X ^{w+} Yvg+vg	1/8 ojos rojos alas reducidas
1/8 X ^{w+} Yvgvg	1/8 ojos blancos alas normales
1/8 X ^w Yvg+vg	1/8 ojos blancos alas reducidas
1/8 X ^w Yvgvg	-

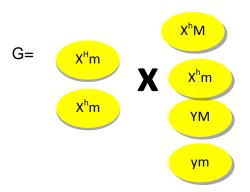
Problema 3

En los seres humanos el mechón blanco es determinado por un gen influido por el sexo (m), el cual se comporta como dominante en hombres y recesivo en mujeres. En otro cromosoma, un gen recesivo ligado al sexo (h) produce un defecto en la coagulación de la sangre conocido como hemofilia, mientras su alelo dominante H, induce la coagulación normal de la sangre. Con base a las características descritas, señale las proporciones genotípicas y fenotípicas de la descendencia de los siguientes matrimonios.

A) P= X^h X^hMM x X^HYmm (mujer hemofílica sin mechón por hombre normal con mechón)

F1	X ^H m	Ym
X ^h M	$X^{H}X^{h}Mm$	X ^h YMm

Proporciones Genotipicas	Proporciones Fenotipicas
mujeres ½ X ^H X ^h Mm	Todas las mujeres sin mechón y coagulación normal
Hombres	Todos los hombre con mechón y

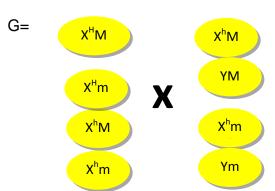

1/ ₂ X ⁿ YMm	hemofílicos
/2 \(\)	Helliolilicos

B) P= X^HX^hMm x X^HYmm (mujer normal y sin mechón por hombre normal y con mechón)

G= X^HM $X^H m$ X^Hm F1 Ym $X^H m$ X^HM X^HX^HMm **X^HYMm** X^Hm X^HX^Hmm X^HYmm X^hM Ym X^hM X^HX^hMm X^hYMm X^hm X^HX^hmm X^hm

Proporciones genotipicas Proporciones fenotipicas	
mujeres 1/8 X ^H X ^H Mm 1/8 X ^H X ^H mm 2/8 X ^H X ^h mm	Mujeres 1/8 mujer coagulación normal y sin mechón 3/8 mujer coagulación normal y con mechón
Hombres 2/8 X ^H YMm 1/8 X ^h Ymm 1/8 X ^h Ymm	Hombres 2/8 coagulación normal hombre con mechón 2/8 hemofílico y con mechón

C) P= X^HX^hmm x X^hYmm (mujer normal y con mechón por hombre hemofílico y con mechón)



F1	X ^h M	X ^h m	YM	Ym
X ^H m	X ^H X ^h Mm	X ^H X ^h mm	X ^H YMm	X ^H Ymm
X ^h m	X ^h X ^h Mm	X ^h X ^h mm	X ^h YMm	X ^h Ymm

Proporciones genotipicas	Proporciones fenotipicas
mujeres	Mujeres
1/8 X ^H X ^h Mm	1/8 mujer sin mechón y coagulación normal
1/8 X ^h X ^h Mm	1/8 mujer con mechón y coagulación normal
1/8 X ^H X ^h mm	1/8 mujer sin mechón y hemofílica
1/8 X ^h X ^h mm	1/8 mujer con mechón mechón y hemofílica

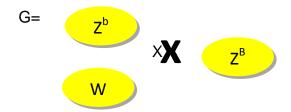
Hombres	
1/8 X ^H YMm	Hombres
1/8 X ^h YMm	2/8 hombre con mechón y coagulación
1/8 X ^H Ymm	normal
1/8 X ^h Ymm	2/8 hombre con mechón y hemofílico

C) $P = X^{H}X^{h}Mm \ x \ X^{h}Ymm$ (mujer normal y sin mechón por hombre hemofílico y con mechón)

F1	X ^h M	X ^h m	YM	Ym
X ^H M	X ^H X ^h MM	X ^H X ^h Mm	X ^H YMM	X ^H YMm
X ^H m	X ^H X ^h Mm	X ^H X ^h mm	X ^H YMm	X ^H Ymm
X ^h M		X ^h X ^h Mm		
X ^h m	X ^h X ^h Mm	X ^h X ^h mm	X ^h YMm	X ^h Ymm

Proporciones Genotípicas	Proporciones Fenotípicas
Mujeres	Mujeres
1/16 X ^H X ^h MM	3/16 coagulación normal y mujer sin mechon
2/16 X ^H X ^h Mm	3/16 mujer hemofilica y sin mechon
1/16 X ^H X ^h mm	1/16 mujer coagulación normal con mechón
1/16 X ^h X ^h MM	1/16 mujer hemofílica y con mechón
2/16 X ^h X ^h Mm	
1/16 X ^h X ^h mm	
Hombres	Hombres
1/16 X ^h YMM	nombres
1/16 X TIMINI 1/16 X ^H Ymm	1/16 agagulación narmal y ain machán
1/16 X 1 mm	1/16 coagulación normal y sin mechón
	3/16 coagulación normal y con mechón
2/16 X ^H YMM	1/16 hemofílico y sin mechón
2/16 X ^H YMm	3/16 hemofílico y con mechón
2/16 X ^h YMm	

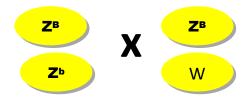
Mecanismo de determinación del sexo ZZ-ZW


Suponga que en aves un gene dominante ligado al sexo (B), produce plumas con apariencia de barras blancas en pollos adultos, mientras que su gen alelo (b) produce plumas de apariencia normal. Con base a estos datos esquematice la cruza entre un macho barrado homócigo y una hembra normal. Obtenga la

F1 y crúcela por si misma para obtener la F2, luego determine la proporción genotípica y fenotípica de esta cruza.

$P = Z^B Z^B \times Z^b W$

B= Barras blancas


b= plumaje normal

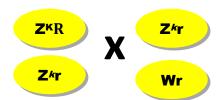
	Z ^b	W
ZB	Z ^B Z ^b	Z ^B W

Cruza

$$F1 \times F1 = Z^B Z^b X Z^B W$$

	Z ^B	W
Z ^B	Z ^B Z ^B	Z ^B W
Z ^b	Z ^B Z ^b	Z ^b W

Prop. Genotípicas	Prop. Fenotípicas
1/4 ZBZB	Todos los gallos son barrados
1/4 Z ^B Z ^b	1/2 gallinas con barras
1/4 Z ^B W	1/2 gallinas sin barras
1/4 Z ^b W	

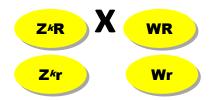

Problema 5

Suponga que un gen ligado al sexo (k) en el gallo produce velocidad de desarrollo rápido del plumaje, mientras que su alelo (K) codifica para desarrollo lento. En otro cromosoma se localiza un gen que produce "cresta en roseta" R y es dominante sobre su alelo (r) el cual determina cresta normal. Si un gallo Z^KZ^KRR se cruza con una gallina de desarrollo rápido y cresta normal. ¿Cuál sería la proporcion genotípica y fenotípica de la F1 Y F2?

K= desarrollo lento k= desarrollo rápido R= cresta roseta r= cresta normal

 $P = Z^K Z^K RR \times Z^k Wrr$

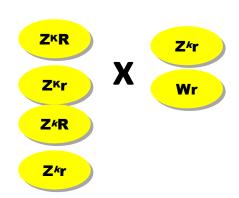
Gametos:


Cruza:

	Z ^k r	W r
Z ^K R	$\mathbf{Z}^{\mathrm{K}}\mathbf{Z}^{k}\mathbf{R}\mathbf{r}$	Z ^K WRr

Prop. Genotípicas	Prop. Fenotípicas
$\frac{1}{2} Z^K Z^k Rr$	Todos los gallos desarrollo lento
½ Z ^K WRr	y cresta roseta
	Todas las gallinas de desarrollo
	lento y cresta roseta

F1 X F1 $Z^{K}Z^{k}Rr X Z^{K}WRr$

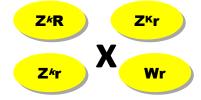

	$Z^{K}R$	Z ^K r	Z^kR	Z ^k r
$Z^K R$	$Z^K Z^K R R$	Z ^K Z ^K Rr	$Z^{\mathrm{K}}Z^{k}RR$	$Z^{K}Z^{k}Rr$
Z ^K r	Z ^K Z ^K Rr	Z ^K Z ^K rr	$Z^K Z^k Rr$	Z ^K Z ^k rr
WR	Z ^K WRR	Z ^K WRr	Z^kWRR	Z ^k WRr
Wr	Z ^K WRr	Z ^K Wrr	Z^kWRr	Z ^k Wrr

Prop. Genotípicas	Prop. Fenotípicas
1/16 Z ^K Z ^K RR 2/16 Z ^K Z ^K Rr 1/16 Z ^K Z ^K rr 1/16 Z ^K Z ^k RR 2/16 Z ^K Z ^k Rr 1/16 Z ^K Z ^k rr 1/16 Z ^K WRR 2/16 Z ^K WRR 1/16 Z ^K WRr 1/16 Z ^K WRr 1/16 Z ^K WRr 1/16 Z ^K WRR	Gallos 6/16 Desarrollo lento y cresta en roseta, 2/16 Desarrollo lento y cresta normal Gallinas 3/16 Desarrollo lento y cresta en roseta, 1/16 Desarrollo lento y cresta normal, 3/16 Desarrollo rápido y cresta en roseta 1/16 Desarrollo rápido y cresta normal

Realice las cruzas que se indican a continuación

a) $Z^K Z^k R r Z^k W r r$

Gametos:

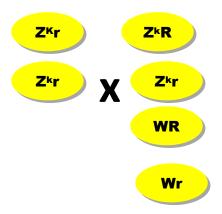


Cruza:

	$Z^{K}R$	Z ^K r	Z^kR	Z ^k r
Z ^k r	$Z^K Z^k Rr$	$Z^K Z^k rr$	$Z^k Z^k Rr$	Z^kZ^krr
Wr	Z^KWRr	Z ^K Wrr	Z^kWRr	Z ^k Wrr

Prop. Genotípicas	Prop. Fenotípicas
Gallina 1/8 Z ^K WRr	Gallinas 1/8 desarrollo lento y cresta en roseta, 1/8 desarrollo lento y cresta normal, 1/8 desarrollo rápido y cresta en roseta, 1/8 desarrollo rápido y cresta
Gallo 1/8 $Z^{K}Z^{k}Rr$ 1/8 $Z^{K}Z^{k}rr$ 1/8 $Z^{K}Z^{k}Rr$ 1/8 $Z^{K}Z^{k}Rr$	Gallos 1/8 desarrollo lento y cresta en roseta 1/8 desarrollo rápido y cresta norma 1/8 desarrollo lento y cresta roseta 1/8desarrollo rápido y cresta normal

$\mathsf{B}) Z^k Z^k R r \mathsf{x} Z^\mathsf{K} W r r$

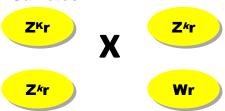

Cruza:

	Z ^k R	Z ^k r
Z ^K r	$Z^K Z^k Rr$	$Z^K Z^k rr$
Wr	Z^kWRr	Z^kWrr

Prop. Genotípicas	Prop. Fenotípicas
Gallinas ¼ Z ^K WRr ¼ Z ^K Wrr	Gallinas ¼ desarrollo lento y cresta roseta ¼ desarrollo lento y cresta normal
Gallos ¼ Z ^K Z ^k Rr ¼ Z ^K Z ^k rr	Gallos ¼ desarrollo lento y cresta roseta ¼ desarrollo lento y cresta normal

C) $Z^K Z^k rr$ x $Z^k WRr$

Gametos


Cruza:

	Z^kR	$Z^k r$	WR	Wr
Z ^K r	$Z^K Z^k Rr$	$Z^K Z^k rr$	Z ^K WRr	Z ^K Wrr
Z^kr	Z^kZ^kRr	Z^kZ^krr	Z^kWRr	Z^kWrr

Prop. Genotípicas	Prop. Fenotípicas
Gallinas	Gallinas
1/8 Z ^K WRr 1/8 Z ^K Wrr 1/8 Z ^k WRr 1/8 Z ^k Wrr	1/8 desarrollo lento y cresta en roseta 1/8 desarrollo lento y cresta normal 1/8 desarrollo rápido y cresta en roseta 1/8 desarrollo rápido y cresta normal
Gallos 1/8 Z ^K Z ^k Rr	Gallos
1/8 Z ^K Z ^k rr 1/8 Z ^k Z ^k Rr 1/8 Z ^k Z ^k rr	1/8 desarrollo lento y cresta en roseta 1/8 desarrollo lento y cresta normal 1/8 desarrollo rápido y cresta en roseta 1/8 desarrollo rápido y cresta normal

d) $Z^K Z^k r r x Z^k W r r$

Gametos:

	Z ^K r	Z ^k r
Z/r	Z ^K Z ^k rr	Z ^K Z ^k rr
Wr	Z ^K Wrr	Z ^k Wr r

Prop. Genotípicas	Prop. Fenotípicas
Gallinas ¼ Z ^k Wrr ¼ Z ^k Wrr	Gallinas ¼ desarrollo rápido y cresta en roseta, ¼ desarrollo rápido y cresta normal
Gallos ¹ / ₄ Z ^K Z ^k rr ¹ / ₄ Z ^K Z ^k rr	Gallos 1/4 Desarrollo lento y cresta en roseta 1/4 desarrollo lento y cresta normal